Facial Expression Recognition Using Texture Description of Displacement Image
نویسندگان
چکیده
In recent years, facial expression recognition, as an interesting problem in computer vision has been performed by means of static and dynamic methods. Dynamic information plays an important role in recognizing facial expression in the image sequences. However, using the entire dynamic information in the expression image sequences is of higher computational cost compared to the static methods. To reduce the computational cost, instead of entire image sequence, only neutral and emotional faces can be employed. In the previous research, this idea was used by means of Difference of Local Binary Pattern Histogram Sequences (DLBPHS) method in which facial important small displacements were vanished by subtracting Local Binary Pattern (LBP) features of neutral and emotional face images. In this paper, a novel approach is proposed to utilize two face images. In the proposed method, the face component displacements are highlighted by subtracting neutral image from emotional image; then, LBP features are extracted from the difference image as well as the emotional one. Then, the feature vector is created by concatenating two LBP histograms. Finally, a Support Vector Machine (SVM) is used to classify the extracted feature vectors. The proposed method is evaluated on standard databases and the results show a significant accuracy improvement compared to DLBPHS.
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملSynthesis of human facial expressions based on the distribution of elastic force applied by control points
Facial expressions play an essential role in delivering emotions. Thus facial expression synthesis gain interests in many fields such as computer vision and graphics. Facial actions are generated by contraction and relaxation of the muscles innervated by facial nerves. The combination of those muscle motions is numerous. therefore, facial expressions are often person specific. But in general, f...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کامل